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Nonequilibrium dynamics of the complex Ginzburg-Landau equation:
Numerical results in two and three dimensions
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This paper is the second of a two-stage exposition, in which we study the nonequilibrium dynamics of the
complex Ginzburg-Landau~CGL! equation. We use spiral defects to characterize the system evolution and
morphologies. In the first paper of this exposition@S.K. Das, S. Puri, and M.C. Cross, Phys. Rev E64, 046206
~2001!#, we presented analytical results for the correlation function of a single spiral defect, and its short-
distance singular behavior. We had also examined the utility of the Gaussian auxiliary field ansatz for charac-
terizing multispiral morphologies. In this paper, we present results from an extensive numerical study of
nonequilibrium dynamics in the CGL equation with dimensionalityd52,3. We discuss the behavior of domain
growth laws; real-space correlation functions; and momentum-space structure factors. We also compare nu-
merical results for the correlation functions and structure factors with analytical results presented in our first
paper.

DOI: 10.1103/PhysRevE.65.046123 PACS number~s!: 64.60.Cn, 05.70.Ln
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I. INTRODUCTION

The complex Ginzburg-Landau~CGL! equation has the
general form

]c~rW,t !

]t
5c~rW,t !1~11 ia!¹2c~rW,t !

2~11 ib!uc~rW,t !u2c~rW,t !, ~1!

where the complex order-parameter fieldc(rW,t) depends
upon spacerW and timet anda, b are real parameters. Th
CGL equation constitutes the natural description of ma
physical systems~e.g., chemical oscillations@1#, thermal
convection in binary fluids@2#, multimode lasers@3#, etc.!,
and exhibits a wide range of dynamical behavior as the
rametersa andb are varied. For an overview of application
of the CGL equation, the reader is referred to the paper
Cross and Hohenberg@4#.

In the limit a,b→`, the CGL equation reduces to th
nonlinear Schro¨dinger ~NLS! equation, which has extensiv
applications in nonlinear optics and plasma physics. T
NLS equation admits of soliton solutions and is solvable
means of the inverse-scattering transformation@5#. On the
other hand, whena5b50, the CGL equation reduces to th
dynamical XY model, which is not analytically tractable
There has been much recent interest in the phase orde
dynamics of theXY model~and analogous models!, i.e., the
nonequilibrium evolution of the disordered system, when
is rendered thermodynamically unstable by a rapid que
below the critical temperature@6,7#. Essentially, the ordering
dynamics is driven by the annihilation of defects, e.g., vo
ces in the case of theXY model. These spatially extende
defects provide a basis for characterizing statistical prop
ties of the evolving morphology, e.g., time-dependent co
lation functions and structure factors, domain growth law
etc. @7#.
1063-651X/2002/65~4!/046123~9!/$20.00 65 0461
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Recently, we have initiated a study of phase order
~nonequilibrium! dynamics in the CGL equation@8,9#. The
appropriate defect structure that characterizes the evol
morphology in this case is the spiral, which is a generali
tion of the vortex defect in theXY model. In the first paper
of this two-stage exposition@8#, we have presented analyt
cal results for the real-space correlation function a
momentum-space structure factor corresponding to a sin
spiral defect. In particular, we were interested in the sho
distance singularity of the correlation function, and its imp
cation for the large-wave-vector behavior of the structu
factor. In our earlier papers@8,9#, we also presented som
numerical results from simulations of thed52 CGL equa-
tion with a50. This paper is the second and final stage
our exposition. Here, we present comprehensive numer
results, obtained from simulations of phase ordering dyna
ics in the CGL equation ind52,3 with a50. We also com-
pare these numerical results with analytical expressions f
Ref. @8#. We should emphasize that our methodology is a
applicable to the case withaÞ0, as the underlying paradigm
is robust, i.e., spiral defects determine the morphology i
wide range of (a,b) space.

This paper is organized as follows. Section II provides
overview of relevant analytical results. In Sec. III, we prese
detailed numerical results for thed52 CGL equation. In
Sec. IV, we present corresponding results for thed53 CGL
equation. Finally, Sec. V concludes this paper with a su
mary and discussion of the results presented in this exp
tion.

II. OVERVIEW OF RELEVANT ANALYTICAL RESULTS

Before presenting our numerical results, it is useful
summarize relevant analytical results for ordering dynam
in the CGL equation. Let us first discuss the case witha
5b50. If the order parameterc is real, Eq.~1! simplifies to
the time-dependent Ginzburg-Landau~TDGL! equation,
which describes the ordering dynamics of a ferromag
@6,7#. In this case, the system evolution is characterized
©2002 The American Physical Society23-1
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the formation and growth of domains enriched in ‘‘up’’ an
‘‘down’’ spins. Domain growth is driven by a curvature
reduction mechanism, which causes the annihilation of in
facial defects. The characteristic length scale obeys
Lifshitz-Cahn-Allen ~LCA! law @10#, L(t);t1/2, where t is
the time after the quench. An important result for orderi
dynamics in the TDGL equation is due to Ohtaet al. @11#,
who used an interface-dynamics approach to obtain an
lytic expression for the correlation function of an orderi
ferromagnet.

The LCA growth law is surprisingly robust over a wid
range of physical situations described by a nonconserved
der parameter@7#. Whenc is complex anda5b50, Eq.~1!
corresponds to theXY model @with O(2) symmetry#, and
domain growth proceeds by the annihilation of vortice
Again, domain growth is described by the LCA law ford
>2, though there are logarithmic corrections ind52, viz.,
L(t);(t/ ln t)1/2 @12#. The corresponding correlation functio
has been obtained by Puri@13#.

Furthermore, Bray and Puri@14# and ~independently!
Toyoki @15# ~BPT! have obtained the correlation functio
referred to as the BPT function, for the vector TDGL equ
tion with O(n) symmetry ind dimensions whenn<d, so
that topological defects are present. The equal-time corr
tion function for theO(n) model is defined asC(r 12,t)
5^cW (rW1 ,t)•cW (rW2 ,t)&, where r 125urW12rW2u, and the angular
brackets refer to an averaging over independent initial c
ditions. The BPT function for theO(n) model has the fol-
lowing functional form:

C~r 12,t !5
ng

2p FBS n11

2
,
1

2D G2

FS 1

2
,
1

2
;
n12

2
;g2D , ~2!

whereB(x,y) is the beta function;F(a,b;c;z) is the hyper-
geometric function@16#; and g5exp@2r12

2 /(2L2)#, L being
the average defect length scale. The appropriate dom
growth law is again the LCA law, though there are logari
mic corrections whenn5d @7#.

Next, let us consider the case withc complex anda,b
Þ0. We will focus on the case witha50, unless explicitly
stated otherwise. As mentioned earlier, this case is repre
tative of a large region of parameter space. Following
work of Hagan@17#, Aransonet al. @18#, and Chate and Man
neville @19#, we briefly discuss the phase diagram of thed
52 CGL equation witha50. The limitb50 corresponds to
theXY model, which is well understood@7,13#. Without loss
of generality, we consider the case withb>0. For 0<b
<b1 (b1.1.397 @17#!, spirals ~which are asymptotically
plane waves! are linearly stable to fluctuations. Forb1,b
<b2 (b2.1.82@18,19#!, spirals are linearly unstable to fluc
tuations, but the growing fluctuations are advected away,
the spiral structure is globally stable. Finally, forb2,b, the
spirals are globally unstable structures and cannot exist
extended times@18#. Our results correspond to the parame
regime withb<b2.

We are interested in the evolution of the CGL equat
from a disordered initial condition. Let us first consider t
case withd52. Typically, the early-time dynamics is gov
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erned by the emergence of spiral point defects. The C
equation witha50 has been studied by Hagan@17#, who
demonstrated that there is a family of spiral solutions as
lows ~in d52):

c~rW,t !5r~r !exp@2 ib~12q2!t1 imu2 if~r !#, ~3!

whererW[(r ,u); q>0 is a constant that depends onb; andm
is the number of arms in the spiral. The cases withm.0 and
m,0 correspond to spirals and antispirals, respectively. T
limiting forms of the functionsr(r ) andf(r ) are

r~r !→~12q2!1/2, f8~r !→q, as r→`,

r~r !→arm, f8~r !→r , as r→0, ~4!

wherea is determined by finiteness conditions. The ord
parameter amplitudeucu saturates to its maximum value on
length scalej;O(1) @9#. Hagan has presented explicit s
lutions for q(b) in the cases withm51,2. We focus on the
case withm561, as only one-armed spirals are expected
be stable in the evolution@17#. In the limit b50, we have
q50, and the spiral solution simplifies to the vorte
solution—for them561 vortex, the lines of constant phas
correspond to constantu. Spiral solutions for the genera
case witha,bÞ0 have been discussed by Aranson and
workers@18,20#.

The spiral defects are equivalent to vortices for leng
L,Lc , whereqLc;O(1). Thus, the early-time growth is
analogous to that for theXY model. At late times, the spiral
experience a repulsive interaction and the system evolu
statistically ‘‘freezes’’ into a state consisting of spirals a
antispirals with saturation lengthLs @9#. Scaling arguments
suggest thatLs;Lc;q21.

Next, let us discuss the correlation function and the str
ture factor. In the present context, the correlation function
defined as

C~r 12,t !5
1

VE drW1^Re$c~rW1 ,t !c~rW2 ,t !* %&, ~5!

whereV is the system volume; and Re(z) refers to the real
part ofz. The structure factor, which is the Fourier transfor
of the correlation function, is defined as follows:

S~k,t !5
1

2
^„uc~kW ,t !u21uc~2kW ,t !u2…&, ~6!

wherec(kW ,t) is the Fourier transform of the order-parame
field c(rW,t) at wave vectorkW .

As a first approximation, we ignore spiral-spiral intera
tions, and assume that the CGL morphology consists of
dependent spirals of lengthL. Furthermore, we are intereste
in distancesr 12@j, wherej is the size of the spiral core. In
this case, we obtain the following integral expression for
correlation function~in d52) @8#:
3-2
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C~r 12!5
~12q2!

p
ReE

0

1

dxxE
0

2p

du
x1reiu

~x21r 212xr cosu!1/2

3exp@2 iqL$x2~x21r 212xr cosu!1/2%#

3h@12~x21r 212xr cosu!1/2#, ~7!

where r 5r 12/L; and the step functionh(y)51(0) if y>0
(y,0). Thus, the scaling form of the single-spiral corre
tion function is C(r 12)/C(0)5g(r 12/L,q2L2). In general,
there is no scaling with the spiral size because of the a
tional factorqL. We recover scaling only in the limitq50
(b50), which corresponds to the case of a vortex. Ess
tially, spirals of different sizes are not morphological
equivalent because there is more rotation in the phase as
goes out further from the core.

The singular behavior ofC(r 12) in the limit r→0 ~but
with r 12/j@1) is of great interest, as it determines the larg
wave-vector (k→`) behavior of the structure factor. In Re
@8#, we undertook the necessary asymptotic analysis to
tain the following expression for the singular part asr→0:

Csing~r 12!5
1

2 (
p50

`

(
m50

`

~21!p1m
~qL!2(p1m)

~2p!! ~2m!!

3

GS 1

2
1mD 2

GS 1

2
2pD 2

~m1p11!! 2

3~2m11!~2p11!r 2(m1p11)ln r . ~8!

We notice that the leading-order singularity isCsing(r 12)
. 1

2 r 2 ln r, as in the case withb50 @7#. However, there is
now a sequence of subdominant singularities proportiona
(qL)2r 4 ln r, (qL)4r 6 ln r, etc., and these become increa
ingly important as the length scaleL increases. The subdom
nant terms inCsing(r 12) are reminiscent of the leading-orde
singularities in models withO(n) symmetry, wheren is even
@7,21#. Of course, in the context ofO(n) models, these sin
gularities only arise forn<d as there are no topologica
defects unless this condition is satisfied. In the present c
text, all these terms are already present ford52. The corre-
sponding structure-factor tail exhibits a sequence of pow
law decays,S(k);(qL)2(m21)Ld/(kL)d12m, where m is a
positive integer. Thus, though the true asymptotic beha
in d52 is still the generalized Porod tail@22#, S(k)
;L2(kL)24, this is seen in conjunction with other powe
law decays. This point will be further elucidated when w
present numerical results for the time-dependent struc
factors in Secs. III and IV.

Next, we briefly consider the CGL equation ind53. The
relevant defects are spiral lines, which are equivalent to
rals translated in a direction perpendicular to the plane of
spiral. It is obvious that the integral expression for the c
relation function remains the same, except that the dista
r 12 between points is the projected distance in the plane
04612
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the spiral. The effects of dimensionality appear explicitly
the corresponding expression for the structure factor.

In our earlier work@8#, we have also examined the utilit
of Gaussian auxiliary field~GAF! approximations@7# to
mimic multispiral morphologies. We found that the simp
GAF ansatz was not reasonable, as it did not account for
order-parameter modulations at defect-defect bounda
However, the integral expression for the correlation funct
obtained from a single spiral successfully describes our
merical results over extended distances. This is because
shocks between spirals effectively isolate one spiral reg
from the influence of other regions. As a matter of fact, t
waves from other spirals decay exponentially through
shock and the phase of a point is always dominated by
nearest spiral. Therefore, we expect that the correlation fu
tion will be dominated by the single-spiral result—in acco
dance with our numerical results presented in Secs. III
IV.

III. NUMERICAL RESULTS IN dÄ2

We obtained numerical results ind52 by implementing
an isotropic Euler-discretized version of Eq.~1! on an N2

lattice. The discretization mesh sizes wereDt50.01 and
Dx51.0. Periodic boundary conditions were applied in bo
directions. The initial condition for the order-parameter fie
consisted of small-amplitude random fluctuations about ze
mimicking the ‘‘high-temperature’’ disordered phase of t
system. In all our simulations, we seta50 andb was var-
ied. Figure 1 shows the typical evolution of the system fro
a random initial condition forb51.25. The black and gray
regions refer to lines of constant phase, as specified in
figure caption. The asterisks denote defect centers, f
where the spiral arms originate. Figure 1 demonstrates
the evolving morphology is characterized by spirals and
tispirals for these parameter values.

In this section, we present numerical results for grow
laws, correlation functions, and structure factors for the ty
cal evolution morphology depicted in Fig. 1. All statistic
data is obtained as an average over five independent run
system sizesN51024. We will compare our numerical re
sults with the analytical results for a single spiral, describ
in Sec. II.

A. Growth laws

Figure 2 plots the square of the characteristic length sc
L(t)2 vs t/ ln t for five different values ofb. The typical
defect size is defined aspL(t)25A/Nd(t), whereA is the
system area andNd(t) is the total number of defects at tim
t. In the 2DXY model~whereb50), the domain growth law
is (t/ ln t)1/2. This would correspond to a straight line in Fi
2, though we do not present data forb50. The data forb
50.25 are comparable to that for theXY model over the
time scales of our simulation.

At early times, the spirals behave as vortices and
expect the growth law to be the same as that for
two-dimensional~2D! XY model. At later times, there is a
repulsive spiral-antispiral interaction and the evolving m
3-3
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SUBIR K. DAS AND SANJAY PURI PHYSICAL REVIEW E65 046123
phology ‘‘freezes’’ in a statistical sense.~The order-
parameter field continues to be time dependent for all tim!
As we have discussed earlier, the crossover length scale
vortex-mediated growth to spiral-mediated growth scales
Lc;q21. We determineLc(b) from the data sets in Fig. 2 a
follows. The first three points of each data set are fitted b
straight line, and the crossover point is designated as the
point that deviates from this straight line. Figure 3 plotsLc
vs q21 for bP@0.5,1.0#, and demonstrates the validity o
this scaling law.~In an earlier paper@9#, we have demon-
strated that the saturation lengthLs;q21.! As b→0, we
expect the crossover to be proportionately delayed, as t
is no freezing of domain growth in theXY model.

B. Correlation functions

We have already defined the correlation function in S
II. In Fig. 4, we present numerical data for the correlati
functions from three different times forb51.25. The nu-
merical results for the correlation function were obtained
‘‘hardening’’ the order-parameter field, i.e., settingucu51
before computing the correlation function or structure fac
Furthermore, the data shown in Fig. 4 are obtained by sph
cally averaging the corresponding vector function. T
correlation-function data show a prominent dip as time

FIG. 1. Evolution from a small-amplitude random initial cond
tion for the two-dimensional CGL equation witha50 and b
51.25. These pictures were obtained by implementing an isotr
Euler discretization of Eq.~1! on a square lattice of sizeN2(N
5256), with periodic boundary conditions in both directions. T
discretization mesh sizes wereDt50.01, Dx51.0. The snapshots
labeled by appropriate times, show lines of constant phaseuc

5tan21(Im c/Rec), measured in radians, with the color codin
ucP@1.85,2.15# ~black!; anducP@3.85,4.15# ~gray!. The asterisks
denote spiral cores, defined as points around which the phasec
rotates by 2p.
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FIG. 2. Plot ofL(t)2 vs t/ ln t for the d52 CGL equation with
a50 andb50.25,0.5,0.75,1.0,1.25~denoted by the specified sym
bols!. The characteristic length scaleL(t) is measured directly from
the evolution morphology as described in the text. For eachb
value, the length-scale data were obtained as an average ove
independent runs for lattice sizesN51024. The plot axes are cho
sen so that data for theXY model~not shown here! lie on a straight
line.

FIG. 3. Plot of crossover length scale,Lc vs q(b)21, for the the
d52 CGL equation withbP@0.5,1.0#. The crossover point is lo-
cated in the manner described in the text. The value ofq(b) is
determined from Hagan’s solution for the one-armed spiral—
Fig. 2 in Ref.@8# or Fig. 5 of Ref.@17#. The solid line refers to the
best linear fit to the data.
3-4
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creases, and the spiral nature of defects become more a
ent. Thus, there is no scaling of the correlation function w
the defect size, in accordance with our earlier arguments

The early-time (t55) correlation function in Fig. 4 de
cays monotonically. It is well described by then52 BPT
@14,15# function in Eq.~2! ~denoted by a dashed line!, which
results from a GAF approximation for theXY model. This
function describes a multivortex morphology, and the len
scaleL is chosen as a fitting parameter. The best-fit value
L is specified in the figure caption.

The correlation functions at later times (t5100,1000) are
well described by the single-spiral correlation function~de-
noted by solid lines! up to the first minimum. The single
spiral function is obtained by a direct numerical integrati
of Eq. ~7!. The appropriateq value was obtained from
Hagan’s solution@17# for q(b) in the case of one-arme
spirals. While comparing the numerical results with the in
gral expression, we treated the length scaleL as a fitting
parameter and laterally scaledr 12 for the analytical function
to match the numerical data atC(r 12,t)50.5. In both cases
(t5100,1000), the best-fit value is specified in the figu
caption and is comparable with the average size of the
fects shown in Fig. 2, which was obtained directly from t
morphology. In our earlier work@9#, we had compared nu
merical data for the correlation function for differentb val-
ues with the analytical form. Though our integral express
is obtained in the context of a single-spiral morphology,

FIG. 4. Plot of correlation functions,C(r 12,t) vs r 12, for the
d52 CGL equation from three different timest55, 100, and 1000
~denoted by the specified symbols!. The parameter values area
50 andb51.25, as in Fig. 1. The numerical data were obtained
an average over five independent runs forN51024. The early-time
data (t55) are fitted to the BPT@14,15# function for theXY model
~denoted as a dashed line!, with the length scaleL as a fitting
parameter. The best-fit value wasL.4.40. The later-time data (t
5100,1000) were fitted to Eq.~7! ~denoted as solid lines! with L as
a fitting parameter. The best-fit values areL.15.25 (t5100); and
L.19.25 (t51000).
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comparison is reasonable upto the first minimum. As
have discussed earlier, the correlation function is domina
by a single spiral because the shocks between spirals e
tively isolate them from each other.

C. Structure factors

As discussed in Sec. II, the consequence of the singula
in the correlation function asr→0 @Eq. ~8!# is a sequence o
power-law decays in the large-wave-vector behavior of
structure factor,S(k);(qL)2(m21)Ld/(kL)d12m, where m
51,2, etc. In d52, the power-law decays areS(k)
;q2(m21)L22k2(2m12). Clearly, the asymptotic behavior i
still the generalized Porod tail,S(k);k24, as in theXY
model @14#, but there are also intermediate decays ask26,
k28, etc. These are expected to interfere with the unamb
ous observation of the generalized Porod tail.

Figure 5 plots ln@S(k,t)# vs lnk for five different values of
b at t51000. We have normalized the structure-factor d
as *0

`dkS(k,t)51. Notice that thekW values in the discrete

Brillouin zone arekW5(2p/NDx)(nx ,ny), wherenx and ny
range from2N/2 to (N/2)21. We retain data up tokmax

5p/A2. The solid lines in Fig. 5 have slopes24, 26, and
28, corresponding tom51,2, and 3, respectively. Fo
smaller values ofb ~e.g.,b50.25), the contributions from
the higher-order decays are small and the tail is domina
by S(k,t);k24. However, for higher values ofb, the
higher-order contributions are not negligible and one s
intermediate regions with behaviorS(k,t);k26, ;k28, etc.
for k,1. Nevertheless, the tail is always seen to be para
to the line with slope24 for very large values ofk.

s

FIG. 5. Plot of structure factor, ln@S(k,t)# vs lnk for the d52
CGL equation witha50 and b50.25,0.5,0.75,1.0,1.25~denoted
by the specified symbols!. All data sets correspond tot51000. The
solid lines have slopes24, 26, and28, as indicated. The data ar
normalized so that*0

`dkS(k,t)51. The averaging statistics is th
same as that in Fig. 4.
3-5
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An alternative measure of the defect length scale is
tained by measuring the amplitude of the structure-factor
In each case, the results are consistent with those show
Fig. 2, as well as the fitting length scales for the correlat
function. For the sake of brevity, we do not present leng
scale data obtained from the structure-factor tail.

IV. NUMERICAL RESULTS IN dÄ3

For the CGL equation ind53, the defect dimensionality
is 1 (5d2n, wheren is the number of components in th
order parameter!. In this case, the defect cores meet and fo
lines, which we will refer to as spiral lines. We implement
an isotropic Euler-discretized version of thed53 CGL equa-
tion on anN3 lattice, with periodic boundary conditions. Th
discretization mesh sizes wereDt50.01 andDx51.0. As in
the d52 case, the initial condition for the order-parame
field consisted of uniformly distributed small-amplitude flu
tuations about zero. Again, we always seta50 and vary the
parameterb.

Figure 6 shows the typical evolution for thed53 CGL
equation withb51.25 from a disordered initial condition
The system size wasN5128. For clarity of presentation, w
only show the spiral lines, defined as regions whereucu
,0.5. In Fig. 7, we show planar cross sections of the sn
shots in Fig. 6. The frames of Fig. 7 are color-coded in
same manner as Fig. 1. The black and gray regions refe
lines of constant phase, as specified in the figure caption.
asterisks refer to spiral cores, defined as regions whereucu
,0.5. In the early-time snapshots (t5100,250), we see an
aggregation of spiral cores. This results from the high den
of spiral lines, many of which cross the plane at points t
are bunched together. This feature is absent at later tim
when the density of spiral lines has thinned out apprecia

The evolving morphology is again characterized by s
rals and antispirals. At comparable values ofb, freezing oc-
curs considerably later in thed53 case than in thed52

FIG. 6. Evolution of thed53 CGL equation from a small-
amplitude random initial condition witha50 and b51.25. The
pictures correspond to anN3 lattice with N5128, and periodic
boundary conditions are applied in all three directions. The discr
zation mesh sizes areDt50.01 andDx51.0. The solid lines denote
regions whereucu,0.5. The snapshots are labeled by the appro
ate evolution times.
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case. This is because the spiral defects can relax in the
pendicular direction without experiencing a repulsive pote
tial. In this section, we will present numerical results for t
growth laws, correlation functions and structure factors
thed53 CGL equation. As in the two-dimensional case, w
will also compare the correlation functions and structure f
tors with the corresponding analytical results for a sin
spiral. The length-scale data is obtained as an average
five independent runs for lattice sitesN5180. On the other
hand, the correlation-function and structure-factor data
obtained from five runs for lattice sizesN5128.

A. Growth laws

Let us first focus on the time dependence of the char
teristic defect size. Recall that the spiral line defect cons
of a spiral translated in the perpendicular direction. We m
sure the lateral length scale by counting the number of sp
cores in all possible planar cross sections along the (x,y,z)
directions. The defect length scale is then obtained
pL(t)25A/Nd(t), whereA(5N2Dx2) is the planar area and
Nd(t) is the average number of defects in the plane. In g
eral, the spiral lines are not oriented along thex, y, or z axis.
Therefore, this definition underestimates the actual len
scale by a constant factor, assuming that the spiral lines
randomly oriented with respect to any arbitrary plane.

For the 3DXY model, the domain growth law isL(t)
;t1/2. In Fig. 8, we plotL(t)2 vs t for six different values of
b. The growth is much faster than that ind52 ~Fig. 2!,
because of the extra degree of freedom for relaxation of
order parameter. This is apparent if one compares the ev

i-

i-

FIG. 7. Horizontal cross sections~at z564) of the snapshots
shown in Fig. 6. The frames show regions of constant phaseuc

5tan21(Im c/Rec), measured in radians, with the color codin
ucP@1.85,2.15# ~black!; anducP@3.85,4.15# ~gray!. The asterisks
denote regions whereucu,0.5.
3-6
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tion pictures in Figs. 1, 6, and 7. The data forb50.25 are
seen to be consistent withXY-like growth over the duration
of our simulation. The data forb51.0,1.25,1.5 show freez
ing, but at later times and larger length scales than thd
52 case~Fig. 2!.

Let us investigate the crossover behavior for the leng
scale data in Fig. 8. As in thed52 case, we fit a straight line
to the first three data points for each set. The crossover p
is designated as the first point that deviates from this stra
line. Figure 9~a! plots Lc vs q21 for bP@0.5,1.5# and con-
firms the scaling lawLc;q21. In the early stages of growth
we haveL(t);t1/2 (XY-like behavior!. Thus, we expect tha
the crossover timetc;q22. Figure 9~b! plots tc vs q22 and
confirms this scaling behavior.

B. Correlation functions

Next, we consider the correlation-function data. As in t
d52 case, we spherically average the vector correla
function to obtain the scalarized functionC(r 12,t). The
evolving system~see Fig. 6! consists of an isotropic mixture
of spiral line defects, so the spherical-averaging procedur
numerically appropriate. However, a single line defect
strongly anisotropic with perfect correlation along the lin
and all decorrelations occurring in the plane of the spiral.
can still compare our numerical data with the analytical
pression for a single spiral, but the quantityL will merely be
treated as a fitting parameter, and is not directly identifia
as the lateral defect size.

Figure 10~a! shows the temporal evolution of the correl
tion function forb51.25. The early-time data (t5100) de-
cays monotonically and is well fitted by the BPT function f
the XY model~denoted as a dashed line!. The late-time data
exhibit oscillations characteristic of spiral defects. The so

FIG. 8. Plot ofL(t)2 vs t for the d53 CGL equation witha
50 and b50.25,0.5,0.75,1.0,1.25,1.5~denoted by the specified
symbols!. The numerical data were obtained as described in the
by averaging over five independent runs for 1803 lattices.
04612
-

int
ht

n

is
s
,
e
-

le

d

lines denote best fits to the integral expression in Eq.~7!,
with L as a fitting parameter. Ther 12 axis for the analytic
form is also scaled so as to match the numerical data
C(r 12,t)50.5. Again, the fits are reasonably good upto t
first minimum. Figure 10~b! shows the corresponding da
for b51.0.

C. Structure factors

In d53, the tail of the structure factor decays asS(k)
;q2(m21)L22k2(2m13), wherem51, 2, etc. Figure 11 is a
plot of the structure factor, ln@S(k,t)# vs lnk, for six different
values ofb at t51000. As before, the structure-factor da
are normalized as*0

`dkS(k,t)51. The solid lines have
slopes25, 27, and29, corresponding tom51,2, and 3,
respectively. As in thed52 case, one sees that for small
values of b ~e.g., b50.25, 0.5), the contributions from
higher-order decays are small and the tail is dominated
S(k,t);k25. The higher-order contributions become mo
noticeable with the increase ofb.

V. SUMMARY AND DISCUSSION

Let us conclude this paper with a summary and discuss
of the results presented in this two-stage exposition on n
equilibrium dynamics in the complex Ginzburg-Landa
~CGL! equation. In the first part of this exposition@8#, we

xt

FIG. 9. ~a! Dependence of crossover length scaleLc on q(b)21

for the d53 CGL equation withbP@0.5,1.5#. The crossover point
is determined as described in the text. The solid line denotes
best linear fit to the data.~b! Plot of crossover time scaletc vs
q(b)22 for the data shown in~a!. The solid line denotes the bes
linear fit to the data.
3-7
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presented analytical results for the correlation function a
ing from a single-spiral defect. We studied this correlati
function in the short-distance limit, and examined the imp
cations of the short-distance singularities for the large-wa
vector tail of the structure factor. In particular, we found th
the structure-factor tail is characterized by a generalized
rod tail, S(k,t);k2(d12) for large k, as in theXY model.
However, there are also subleading decays,S(k,t)
;k2(d12m) with m.1, which would interfere with the un
ambiguous observation of the generalized Porod tail.

This paper constitutes the second and final part of
exposition. Here, we have presented detailed numerica
sults for domain growth laws; correlation functions; a
structure factors for phase ordering dynamics in the C
equation ind52,3. We find that the spirals behave as vor
ces at early times@L(t),Lc , whereqLc;O(1)#, i.e., the
early-time behavior is analogous to that for theXY model. At
later times, the spiral nature of the defects plays an impor
role in two respects. First, there is a repulsive spir
antispiral interaction that leads to the statistical freezing
domain growth. The saturation length scale depends upob

FIG. 10. Plot of correlation functionsC(r 12,t) vs r 12 for the d
53 CGL equation from three different timest5100, 500, and 1000
~denoted by the specified symbols!. The numerical data were ob
tained by averaging over five independent runs for 1283 lattices.~a!
Data for parameter valuesa50 andb51.25. Thet5100 data are
fit to the BPT form~dashed line! and the best-fit length scale isL
.4.9. The data fort5500,1000 are fit to Eq.~7! ~solid lines! and
the best-fit parameter values areL.13.6 (t5500), andL.16.2
(t51000). ~b! Analogous to~a!, but for a50 and b51.0. The
best-fit parameter values areL.6.85 (t5100); L.13.75 (t
5500); L.18.0 (t51000).
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asLs;q(b)21 @9#. Second, the correlation function exhibi
a crossover from a monotonically decayingXY-like form to
an oscillatory form, which does not scale with the defe
size.

In this paper, we have also presented numerical results
the structure factor. Our results elucidate the nature of
structure-factor tail—the asymptotic behavior is the gene
ized Porod law, but this appears in conjunction with a
quence of higher-order power-law decays. The subdomin
behavior is accentuated at larger values ofb.

Finally, we would like to again stress the general nature
our results. In this exposition, we have confined ourselve
presenting analytical and numerical results fora50 andb
Þ0. However, the underlying paradigm remains the same
an extended region of parameter space, viz., spirals go
the temporal evolution and spatial morphology of the CG
equation for a wide range of (a,b) values. The results of this
exposition apply directly in that case also, with appropria
modifications in the functional form of the spiral solutio
@18,20#.
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FIG. 11. Plot of ln@S(k,t)# vs lnk for the d53 CGL equation
with a50 andb50.25,0.5,0.75,1.0,1.25,1.5~denoted by the speci
fied symbols!. All data sets correspond tot51000. The solid lines
have slopes25, 27, and29, as indicated. The data are norma
ized so that*0

`dkS(k,t)51. The averaging statistics is the same
that in Figure 10.
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