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This paper is the second of a two-stage exposition, in which we study the nonequilibrium dynamics of the
complex Ginzburg-LandaiCGL) equation. We use spiral defects to characterize the system evolution and
morphologies. In the first paper of this expositi{@K. Das, S. Puri, and M.C. Cross, Phys. Re§4:046206
(2001)], we presented analytical results for the correlation function of a single spiral defect, and its short-
distance singular behavior. We had also examined the utility of the Gaussian auxiliary field ansatz for charac-
terizing multispiral morphologies. In this paper, we present results from an extensive numerical study of
nonequilibrium dynamics in the CGL equation with dimensionality2,3. We discuss the behavior of domain
growth laws; real-space correlation functions; and momentum-space structure factors. We also compare nu-
merical results for the correlation functions and structure factors with analytical results presented in our first
paper.
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[. INTRODUCTION Recently, we have initiated a study of phase ordering
(nonequilibrium dynamics in the CGL equatiof8,9]. The
The complex Ginzburg-Landa(CGL) equation has the appropriate defect structure that characterizes the evolving
general form morphology in this case is the spiral, which is a generaliza-
tion of the vortex defect in th&Y model. In the first paper
of this two-stage expositiof8], we have presented analyti-
a¢( )_¢(r )+ (1+ia) V(T 1) cal results for the real-space correlation function and
momentum-space structure factor corresponding to a single-
R . spiral defect. In particular, we were interested in the short-
—(1+iB)|(r,H)|%y(r 1), (1)  distance singularity of the correlation function, and its impli-
cation for the large-wave-vector behavior of the structure
. factor. In our earlier paperf8,9], we also presented some
where the complex order-parameter fiefdr,t) depends nmerical results from simulations of thie=2 CGL equa-
upon space and timet and a, 3 are real parameters. The tion with «=0. This paper is the second and final stage of
CGL equation constitutes the natural description of manyour exposition. Here, we present comprehensive numerical
physical systemge.g., chemical oscillation$l], thermal results, obtained from simulations of phase ordering dynam-
convection in binary fluidg2], multimode laser$3], etc), ics in the CGL equation inl= 2,3 with «=0. We also com-
and exhibits a wide range of dynamical behavior as the papare these numerical results with analytical expressions from
rametersy andg are varied. For an overview of applications Ref. [8]. We should emphasize that our methodology is also
of the CGL equation, the reader is referred to the paper b¥pplicable to the case with# 0, as the underlying paradigm
Cross and Hohenbefd]. is robust, i.e., spiral defects determine the morphology in a
In the limit «,3—, the CGL equation reduces to the wide range of @,B) space.
nonlinear Schrdinger (NLS) equation, which has extensive  This paper is organized as follows. Section Il provides an
applications in nonlinear optics and plasma physics. Theverview of relevant analytical results. In Sec. Ill, we present
NLS equatlon admits of soliton solutions and is solvable bydeta"ed numerical results for the=2 CGL equat|0n In
means of the inverse-scattering transformafibh On the  sec. IV, we present corresponding results for dke3 CGL
other hand, whea= =0, the CGL equation reduces to the equation. Finally, Sec. V concludes this paper with a sum-
dynamical XY model, which is not analytically tractable. mary and discussion of the results presented in this exposi-
There has been much recent interest in the phase orderingn.
dynamics of theXY model(and analogous modgls.e., the
nonequilibrium evolution of the disordered system, when it |, 5\ ERVIEW OF RELEVANT ANALYTICAL RESULTS
is rendered thermodynamically unstable by a rapid quench
below the critical temperatui®,7]. Essentially, the ordering Before presenting our numerical results, it is useful to
dynamics is driven by the annihilation of defects, e.g., vorti-summarize relevant analytical results for ordering dynamics
ces in the case of thXY model. These spatially extended in the CGL equation. Let us first discuss the case with
defects provide a basis for characterizing statistical proper=8=0. If the order parametef is real, Eq.(1) simplifies to
ties of the evolving morphology, e.g., time-dependent correthe time-dependent Ginzburg-Landa@DGL) equation,
lation functions and structure factors, domain growth lawswhich describes the ordering dynamics of a ferromagnet
etc.[7]. [6,7]. In this case, the system evolution is characterized by
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the formation and growth of domains enriched in “up” and erned by the emergence of spiral point defects. The CGL

“down” spins. Domain growth is driven by a curvature- equation witha=0 has been studied by Hagah7], who

reduction mechanism, which causes the annihilation of interdemonstrated that there is a family of spiral solutions as fol-

facial defects. The characteristic length scale obeys thows (in d=2):

Lifshitz-Cahn-Allen (LCA) law [10], L(t)~t2, wheret is

the time after the quench. An important result for ordering > i A2Vt i

dynamics in the TDGL equation is due to Otegal. [11], v =pnexd —IA(L-aHt+rimo—id(r)], ()

who used an interface-dynamics approach to obtain an ana- - i

lytic expression for the correlation function of an orderingWherer=(r,6); q=0 is a constant that depends Snandm

ferromagnet. is the number of arms in the spiral. The cases with O and
The LCA growth law is surprisingly robust over a wide m<0 correspond to spiralls and antispirals, respectively. The

range of physical situations described by a nonconserved olimiting forms of the functionsp(r) and ¢(r) are

der parametel7]. Wheny is complex andv=8=0, Eq.(1)

corresponds to th&Y model [with O(2) symmetry, and p(N—(1-g),  ¢'(r)—q, as r—x,
domain growth proceeds by the annihilation of vortices.
Again, domain growth is described by the LCA law fdr p(ry—ar™ ¢'(r)—r, as r—o, (4

=2, though there are logarithmic correctionsdi 2, viz.,
L(t)~(t/Int)?[12]. The corresponding correlation function \yherea is determined by finiteness conditions. The order-

has been obtained by Pya3]. parameter amplitudg)| saturates to its maximum value on a

Futhermore, Bray and Eurﬁ14] and (inde_pendentl}/ length scaleé~0O(1) [9]. Hagan has presented explicit so-
Toyoki [15] (BPT) have obtained the correlation function, lutions for q(/8) in the cases witm=1,2. We focus on the

referred to as the BPT function, for the vector TDGL equa-cage \ithm= =1, as only one-armed spirals are expected to
tion with O(_n) symmetry ind dimensions Whem§d, SO pe stable in the evolutiofl7]. In the limit 8=0, we have
t_hat topolt_)glcal defects are preser_lt. Th? equal-time correlaqzoy and the spiral solution simplifies to the vortex
tion function for theO(n) model is defined ag(ri,,t)  gqjytion—rfor them=+1 vortex, the lines of constant phase

=((r1,1)-(r2,1)), wherer,=[ry—r5|, and the angular correspond to constard. Spiral solutions for the general
brackets refer to an averaging over independent initial conggse witha, 3#0 have been discussed by Aranson and co-
ditions. The BPT function for th©(n) model has the fol-  \orkers[18,20.
lowing functional form: The spiral defects are equivalent to vortices for lengths
L<L., whereqL.~0O(1). Thus, the early-time growth is
n+1 1\]2 /1 1 n+2 ’ analogous to that for th€Y model. At late times, the spirals
T'E) F 505 Y] 2 experience a repulsive interaction and the system evolution
statistically “freezes” into a state consisting of spirals and
antispirals with saturation lengthg [9]. Scaling arguments
suggest that .~L.~q ™.
. Next, let us discuss the correlation function and the struc-
Wire factor. In the present context, the correlation function is
defined as

ny
C(rlz,t)zz B

whereB(X,y) is the beta functionf(a,b;c;z) is the hyper-
geometric functiof16]; and y=exd —r1/(2L?)], L being
the average defect length scale. The appropriate doma
growth law is again the LCA law, though there are logarith-
mic corrections whem=d [7].

Next, let us consider the case with complex anda, 8 1
+#0. We will focus on the case with=0, unless explicitly Crpt)= —f dri(Re{y(r,)i(r,)*}), (5
stated otherwise. As mentioned earlier, this case is represen- \
tative of a large region of parameter space. Following the
work of Hagarn{17], Aransoret al.[18], and Chate and Man- whereV is the system volume; and Re(refers to the real
neville [19], we briefly discuss the phase diagram of the part ofz. The structure factor, which is the Fourier transform
=2 CGL equation withw=0. The limit 3=0 corresponds to of the correlation function, is defined as follows:
the XY model, which is well understodd,13]. Without loss
of generality, we consider the case wig=0. For 0<p 1 . .
<pB; (B1=1.397 [17]), spirals (which are asymptotically S(k,t)=§<(|¢(k,t)|2+|¢(—k,t)|2)>, (6)
plane wavepare linearly stable to fluctuations. F@; <
<, (B,=1.82[18,19), spirals are linearly unstable to fluc- .
tuations, but the growing fluctuations are advected away, i.eWherey(k,t) is the Fourier transform of the order-parameter
the spiral structure is globally stable. Finally, f85<p, the  field ¢(r,t) at wave vectok.
spirals are globally unstable structures and cannot exist for As a first approximation, we ignore spiral-spiral interac-
extended time§18]. Our results correspond to the parametertions, and assume that the CGL morphology consists of in-
regime with B< 3. dependent spirals of length Furthermore, we are interested

We are interested in the evolution of the CGL equationin distances (,> &, where¢ is the size of the spiral core. In
from a disordered initial condition. Let us first consider thethis case, we obtain the following integral expression for the
case withd=2. Typically, the early-time dynamics is gov- correlation function(in d=2) [8]:
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(1-9?) 1 o x+relf the spiral. The _effects of di.mensionality appear explicitly in
C(rip= Rej dxxf do - 7 the corresponding expression for the structure factor.
m 0 0 (X“+r°+2xr coso) In our earlier workf 8], we have also examined the utility

of Gaussian auxiliary field GAF) approximations[7] to
mimic multispiral morphologies. We found that the simple

X h[1—(x?+r?+2xr cosd)¥?], (7) GAF ansatz was not reasonable, as it did not account for the
order-parameter modulations at defect-defect boundaries.
However, the integral expression for the correlation function
obtained from a single spiral successfully describes our nu-
merical results over extended distances. This is because the
shocks between spirals effectively isolate one spiral region

. . . . from the influence of other regions. As a matter of fact, the
tional factoqu. We recover scaling only in the limij=0 waves from other spirals decay exponentially through the
(./820)’ Wh'Ch corrgsponds to the case of a vortex. Essenéhock and the phase of a point is always dominated by the
t'aHY’ spirals of d|fferent_ sizes are _not.morphologmally nearest spiral. Therefore, we expect that the correlation func-
equivalent because there is more rotation in the phase as oj§,, wiil be dominated by the single-spiral result—in accor-

goes OUt. further from t_he core. . dance with our numerical results presented in Secs. Il and
The singular behavior o€(r5) in the limit r—0 (but

with r1,/£>1) is of great interest, as it determines the large-
wave-vector k— ) behavior of the structure factor. In Ref.

[8], we undertook the necessary asymptotic analysis to ob- Ill. NUMERICAL RESULTS IN  d=2
tain the following expression for the singular partras0O:

X exd —iqL{x— (x?+r2+2xr cosf)*3]

wherer =r,/L; and the step functioh(y)=1(0) if y=0
(y<0). Thus, the scaling form of the single-spiral correla-

We obtained numerical results a=2 by implementing
an isotropic Euler-discretized version of Ed) on anN?
1 L (qL)Zerm lattice. The discretization mesh sizes wek¢=0.01 and
Csind M12) =5 Z 2 (=1 oo (2m! Ax=1.0. Periodic boundary conditions were applied in both
2 5=0 m=0 (2p)!(2m)! AT . Y .
directions. The initial condition for the order-parameter field
consisted of small-amplitude random fluctuations about zero,
mimicking the “high-temperature” disordered phase of the
1 5 system. In all our simulations, we set=0 and B was var-
— p) (m+p+1)12 ied. Figure 1 shows the typical evolution of the system from
2 a random initial condition fo3=1.25. The black and gray
2(m+p+1 regions refer to lines of constant phase, as specified in the
X(2m+1)(2p+1rsm e Binr. ® figure caption. The asterisks denote defect centers, from
where the spiral arms originate. Figure 1 demonstrates that
We notice that the leading-order singularity @n(r12)  the evolving morphology is characterized by spirals and an-
=3r?Inr, as in the case witl8=0 [7]. However, there is tispirals for these parameter values.
now a sequence of subdominant singularities proportional to In this section, we present numerical results for growth
(qL)?r*Inr, (gL)*r®Inr, etc., and these become increas-laws, correlation functions, and structure factors for the typi-
ingly important as the length scaleincreases. The subdomi- cal evolution morphology depicted in Fig. 1. All statistical
nant terms inCgj(r12) are reminiscent of the leading-order data is obtained as an average over five independent runs for
singularities in models wit®(n) symmetry, where is even  system sizesN=1024. We will compare our numerical re-
[7,21]. Of course, in the context d(n) models, these sin- sults with the analytical results for a single spiral, described
gularities only arise fom=d as there are no topological in Sec. Il.
defects unless this condition is satisfied. In the present con-
text, all these terms are already presentder2. The corre-
sponding structure-factor tail exhibits a sequence of power-
law decays,S(k)~ (qL)2M~ LY/ (kL)9"2M wherem is a Figure 2 plots the square of the characteristic length scale,
positive integer. Thus, though the true asymptotic behaviok(t)? vs t/Int for five different values ofg. The typical
in d=2 is still the generalized Porod tafl22], S(k) defect size is defined asL(t)?>=A/N4(t), whereA is the
~L2(kL) %, this is seen in conjunction with other power- system area anb4(t) is the total number of defects at time
law decays. This point will be further elucidated when wet. In the 2DXY model(where3=0), the domain growth law
present numerical results for the time-dependent structuris (t/Int)¥2. This would correspond to a straight line in Fig.
factors in Secs. Ill and IV. 2, though we do not present data f8r=0. The data forB
Next, we briefly consider the CGL equationds3. The  =0.25 are comparable to that for th€Y model over the
relevant defects are spiral lines, which are equivalent to spitime scales of our simulation.
rals translated in a direction perpendicular to the plane of the At early times, the spirals behave as vortices and we
spiral. It is obvious that the integral expression for the cor-expect the growth law to be the same as that for the
relation function remains the same, except that the distand@vo-dimensional(2D) XY model. At later times, there is a
ri, between points is the projected distance in the plane ofepulsive spiral-antispiral interaction and the evolving mor-

1 2
~+m

2

X
r

A. Growth laws
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a=0 andB=0.25,0.5,0.75,1.0,1.2@enoted by the specified sym-

FIG. 1. Evolution from a small-amplitude random initial condi- bols). The characteristic length scdl€t) is measured directly from
tion for the two-dimensional CGL equation with=0 and B the evolution morphology as described in the text. For efch
=1.25. These pictures were obtained by implementing an isotropigalue, the length-scale data were obtained as an average over five
Euler discretization of Eq(1) on a square lattice of siz8*(N  independent runs for lattice sizés=1024. The plot axes are cho-
=256), with periodic boundary conditions in both directions. The sen so that data for théY model(not shown herglie on a straight
discretization mesh sizes wetg=0.01, Ax=1.0. The snapshots, |ine.
labeled by appropriate times, show lines of constant phgse
=tan (Im y/Rey), measured in radians, with the color coding:
0,e[1.85,2.15 (black; and #,<[3.85,4.19 (gray). The asterisks
denote spiral cores, defined as points around which the phage of
rotates by 2r.

30 T T T T

phology “freezes” in a statistical sense(The order-
parameter field continues to be time dependent for all times.
As we have discussed earlier, the crossover length scale from 25 -
vortex-mediated growth to spiral-mediated growth scales as
L.~q~ L. We determind_.(3) from the data sets in Fig. 2 as

follows. The first three points of each data set are fitted by a
straight line, and the crossover point is designated as the first 20
point that deviates from this straight line. Figure 3 plbts -
vs q ! for Be€[0.5,1.0, and demonstrates the validity of
this scaling law.(In an earlier papef9], we have demon-
strated that the saturation length~q 1) As B—0, we
expect the crossover to be proportionately delayed, as there
is no freezing of domain growth in theéY model.

. ) 10— ° _
B. Correlation functions

We have already defined the correlation function in Sec. 2 4 6 8 10 12
II. In Fig. 4, we present numerical data for the correlation a
functions from three different times fg8=1.25. The nu-
merical results for the correlation function were obtained by kG, 3. Plot of crossover length scale, vs g(8) 2, for the the
“hardening” the order-parameter field, i.e., settifg|=1  4=2 CGL equation withe[0.5,1.0. The crossover point is lo-
before computing the correlation function or structure factorcated in the manner described in the text. The valug (@) is
Furthermore, the data shown in Fig. 4 are obtained by spherietermined from Hagan's solution for the one-armed spiral—see
cally averaging the corresponding vector function. TheFig. 2 in Ref.[8] or Fig. 5 of Ref.[17]. The solid line refers to the
correlation-function data show a prominent dip as time in-best linear fit to the data.
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FIG. 4. Plot of correlation functionsG(r,,t) vsry,, for the FIG. 5. Plot of structure factor, [8(k.t)] vs Ink for the d=2

d=2 CGL equation from three different timeés-5, 100, and 1000 cGL equation witha=0 and 8=0.25,0.5,0.75,1.0,1.2&denoted

(denoted by the specified symbplghe parameter values are  py the specified symbolsAll data sets correspond te=1000. The
=0andg=1.25, asin Fig. 1. The numerical data were obtained aslid lines have slopes 4, —6, and—8, as indicated. The data are
an average over five independent runsNor 1024. The early-ime  normalized so thaf;dkS(k,t)=1. The averaging statistics is the
data ¢=>5) are fitted to the BPT14,15 function for theXY model  same as that in Fig. 4.

(denoted as a dashed ljpevith the length scald. as a fitting

parameter. The best-fit value was=4.40. The later-time datat (

=100,1000) were fitted to E(7) (denoted as solid lingsvith Las ~ Comparison is reasonable upto the first minimum. As we
a fitting parameter. The best-fit values &re15.25 ¢=100); and have discussed earlier, the correlation function is dominated

L=19.25 ¢=1000). by a single spiral because the shocks between spirals effec-
tively isolate them from each other.

creases, and the spiral nature of defects become more appar-

ent. Thus, there is no scaling of the correlation function with C. Structure factors

the defect size, in accordance with our earlier arguments.

. X S As discussed in Sec. Il, the consequence of the singularity
The early-time {=5) correlation function in Fig. 4 de-

. ) ) in the correlation function as—0 [Eq. (8)] is a sequence of
cays monotpnlc_ally. It is well described by tme_=2 B_PT power-law decays in the large-wave-vector behavior of the
[14,15 function in Eq.(2) (denoted by a dashed lipavhich structure factor,S(k)~ (qL)2M= DL/ (kL)4+2™ where m
results from a GAF approximation for theY model. This  _1 5 ot |n d=2. the power-law deca},/s ars(k)
function describes a multivortex morphology, and the Iengthwq’z(r’m 1)L72k7(2m+2’)_ Clearly, the asymptotic behavior is
scaleL is chosen as a fitting parameter. The best-fit value Ogtill the generalized Porod te;iS(k)~k‘4 as in thexy
L is specified in the figure caption. X
The correlation functions at later times=100,1000) are
well described by the single-spiral correlation functi@te-
noted by solid linesup to the first minimum. The single-

spiral function is obtameql by a direct numenca_l mtegraﬂonB att=1000. We have normalized the structure-factor data
of Eqg. (7). The appropriateq value was obtained from

Hagan's solution[17] for q(8) in the case of one-armed asfodkS(k,t)zl.éNotlce that thek values in the discrete
spirals. While comparing the numerical results with the inte-Brillouin zone arek=(27/NAx)(n,,n,), wheren, andn,

gral expression, we treated the length sdalas a fitting range from—N/2 to (N/2)—1. We retain data up té,
parameter and laterally scaleg, for the analytical function =/+2. The solid lines in Fig. 5 have slopes4, —6, and

to match the numerical data &{(r,,t)=0.5. In both cases —8, corresponding tom=1,2, and 3, respectively. For
(t=100,1000), the best-fit value is specified in the figuresmaller values of3 (e.g., 3=0.25), the contributions from
caption and is comparable with the average size of the ddghe higher-order decays are small and the tail is dominated
fects shown in Fig. 2, which was obtained directly from theby S(k,t)~k~*. However, for higher values of3, the
morphology. In our earlier work9], we had compared nu- higher-order contributions are not negligible and one sees
merical data for the correlation function for differefitval-  intermediate regions with behavigtk,t)~k ¢, ~k~8, etc.

ues with the analytical form. Though our integral expressiorfor kK<<1. Nevertheless, the tail is always seen to be parallel
is obtained in the context of a single-spiral morphology, theto the line with slope-4 for very large values of.

model[14], but there are also intermediate decaysas,
k8, etc. These are expected to interfere with the unambigu-
ous observation of the generalized Porod tail.

Figure 5 plots IpS(k,t)] vs Ink for five different values of
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FIG. 6. Evolution of thed=3 CGL equation from a small- ; l,:/; ] Q_\—
amplitude random initial condition witte=0 and 8=1.25. The > Ly 'L""‘\ \
pictures correspond to aN® lattice with N=128, and periodic ] / o)
boundary conditions are applied in all three directions. The discreti- 5 i
zation mesh sizes atkt=0.01 andAx=1.0. The solid lines denote i |'. )
regions wherg| <0.5. The snapshots are labeled by the appropri- St A e
ate evolution times.
X X

An alternative measure of the defect length scale is 0b- 15 7 Horizontal cross sectior(at z=64) of the snapshots
tained by measuring the amplitude of the structure-factor tailshown in Fig. 6. The frames show regions of constant phtase
In each case, the results are consistent with those shown inian-1(1m y/Rey), measured in radians, with the color coding:
Fig. 2, as well as the fitting length scales for the correlation,gwe[llgaz_la (black; and 6, < [3.85,4.15 (gray). The asterisks
function. For the sake of brevity, we do not present lengthenote regions whefes| <0.5.
scale data obtained from the structure-factor tail.
case. This is because the spiral defects can relax in the per-
IV. NUMERICAL RESULTS IN d=3 pendicular direction without experiencing a repulsive poten-
L . . .. tial. In this section, we will present numerical results for the
. For the CGL equatl_on il =3, the defect dlmen5|0r_1allty growth laws, correlation functions and structure factors for
is 1 (=d—n, Whefer! is the number of components in the thed=3 CGL equation. As in the two-dimensional case, we
qrder par_ameterlr] this case, the Qefegt cores meet and formvviII also compare the correlation functions and structure fac-
Ime_s, Wh'(?h we W|Il_refer _to as sp|r_al lines. We mplementedtors with the corresponding analytical results for a single
an |sotrop|c3EuI§r-d|sc_ret|zeql Version of thie:3 CGL €qua-  gpiral. The length-scale data is obtained as an average over
tion on anN* lattice, with periodic boundary conditions. The & independent runs for lattice sité&=180. On the other

discre_tization mesh sizes wetd =0.01 andAx=1.0. ASin  panq the correlation-function and structure-factor data are
the d=2 case, the initial condition for the order—parameterobtained from five runs for lattice sizés=128.

field consisted of uniformly distributed small-amplitude fluc-
tuations about zero. Again, we always set 0 and vary the
parameters.

Figure 6 shows the typical evolution for tlie=3 CGL Let us first focus on the time dependence of the charac-
equation withB=1.25 from a disordered initial condition. teristic defect size. Recall that the spiral line defect consists
The system size wad=128. For clarity of presentation, we of a spiral translated in the perpendicular direction. We mea-
only show the spiral lines, defined as regions whate  sure the lateral length scale by counting the number of spiral
<0.5. In Fig. 7, we show planar cross sections of the snapeores in all possible planar cross sections along #)g,¢)
shots in Fig. 6. The frames of Fig. 7 are color-coded in thedirections. The defect length scale is then obtained as
same manner as Fig. 1. The black and gray regions refer toL(t)?=A/N4(t), whereA(=N?Ax?) is the planar area and
lines of constant phase, as specified in the figure caption. Thdy(t) is the average number of defects in the plane. In gen-
asterisks refer to spiral cores, defined as regions whire eral, the spiral lines are not oriented along xhg, or z axis.
<0.5. In the early-time snapshots=100,250), we see an Therefore, this definition underestimates the actual length
aggregation of spiral cores. This results from the high densitgcale by a constant factor, assuming that the spiral lines are
of spiral lines, many of which cross the plane at points tharandomly oriented with respect to any arbitrary plane.
are bunched together. This feature is absent at later times, For the 3D XY model, the domain growth law ik(t)
when the density of spiral lines has thinned out appreciably~t2. In Fig. 8, we plotL(t)? vst for six different values of

The evolving morphology is again characterized by spi-8. The growth is much faster than that =2 (Fig. 2),
rals and antispirals. At comparable valuesffreezing oc- because of the extra degree of freedom for relaxation of the
curs considerably later in thé=3 case than in thel=2  order parameter. This is apparent if one compares the evolu-

A. Growth laws
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FIG. 8. Plot ofL(t)? vst for the d=3 CGL equation witha
=0 and 8=0.25,0.5,0.75,1.0,1.25,1.6lenoted by the specified 100T | | | | | (b)
symbolg. The numerical data were obtained as described in the text 0 5 50 75 100 125

by averaging over five independent runs for 3 &ftices.

tion pictures in Figs. 1, 6, and 7. The data {8+ 0.25 are FIG. 9. () Dependence of crossover length sdaleon q(3)
seen to be consistent witkY-like growth over the duration  for the =3 CGL equation with3e[0.5,1.5. The crossover point
of our simulation. The data fo=1.0,1.25,1.5 show freez- s determined as described in the text. The solid line denotes the
ing, but at later times and larger length scales thandhe pest linear fit to the datab) Plot of crossover time scalg, vs
=2 case(Fig. 2. q(B) 2 for the data shown irfa). The solid line denotes the best

Let us investigate the crossover behavior for the lengthtinear fit to the data.
scale data in Fig. 8. As in thet=2 case, we fit a straight line
to the first three data points for each set. The crossover poifihes denote best fits to the integral expression in .
is designated as the first point that deviates from this straighith L as a fitting parameter. The, axis for the analytic
line. Figure 9a) plotsL. vs q ! for B€[0.5,1.9 and con-  form is also scaled so as to match the numerical data at
firms the scaling law..~q ™. In the early stages of growth, C(r,,,t)=0.5. Again, the fits are reasonably good upto the
we havel (t) ~t*2 (X Y-like behavioj. Thus, we expect that first minimum. Figure 1(b) shows the corresponding data
the crossover timé,~q~2. Figure 9b) plotst. vsq 2 and  for =1.0.
confirms this scaling behavior.

C. Structure factors

B.C lation functi .
ofrelation functions In d=3, the tail of the structure factor decays 3&k)

Next, we consider the correlation-function data. As in the~ g2(M-1Y|_ ~2k~(2m+3) \wherem=1, 2, etc. Figure 11 is a
d=2 case, we spherically average the vector correlatiomplot of the structure factor, [&(k,t)] vs Ink, for six different
function to obtain the scalarized functio@(ri,,t). The  values ofg at t=1000. As before, the structure-factor data
evolving systen{see Fig. 6 consists of an isotropic mixture gare normalized aggdkgk,t)=1. The solid lines have
of spiral line defects, so the spherical-averaging procedure i§|opes—5, —7, and—9, corresponding ton=1,2, and 3,
numerically appropriate. However, a single line defect isrespectively. As in thel=2 case, one sees that for smaller
strongly anisotropic with perfect correlation along the line,y | es of B (e.g., B=0.25, 0.5), the contributions from
and all decorrelations occurring in the plane of the spiral. WEhigher-order decays are small and the tail is dominated by
can still compare our numerical data with the analytical ex-g(k,t)~k 5. The higher-order contributions become more
pression for a single spiral, but the quantitvill merely be  oticeable with the increase &
treated as a fitting parameter, and is not directly identifiable
as the lateral defect size.

Figure 1@a) shows the temporal evolution of the correla-
tion function for 8=1.25. The early-time data £ 100) de- Let us conclude this paper with a summary and discussion
cays monotonically and is well fitted by the BPT function for of the results presented in this two-stage exposition on non-
the XY model(denoted as a dashed lin&he late-time data equilibrium dynamics in the complex Ginzburg-Landau
exhibit oscillations characteristic of spiral defects. The solid(CGL) equation. In the first part of this expositi¢8], we

V. SUMMARY AND DISCUSSION
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0 5 10 15 20 FIG. 11. Plot of InSkt)] vs Ink for the d=3 CGL equation

with =0 andB=0.25,0.5,0.75,1.0,1.25,1(8enoted by the speci-
fied symbols. All data sets correspond te= 1000. The solid lines
FIG. 10. Plot of correlation function€(r,,t) vsry, for thed  have slopes-5, —7, and—9, as indicated. The data are normal-
=3 CGL equation from three different timés 100, 500, and 1000 ized so thaf ;dkS(k,t)=1. The averaging statistics is the same as
(denoted by the specified symbpl¥he numerical data were ob- that in Figure 10.
tained by averaging over five independent runs for’l1agices.(a)
Data for parameter values=0 and3=1.25. Thet=100 data are asL ~q(B) * [9]. Second, the correlation function exhibits
fit to the BPT form(dashed lingand the best-fit length scalelis g crossover from a monotonically decayiXy-like form to
=4.9. The data fot=500,1000 are fit to Eq(7) (solid lines and  an oscillatory form, which does not scale with the defect
the best-fit parameter values dre=13.6 (=500), andL=16.2 size.
(t=1000). (b) Analogous to(a), but for =0 and #=1.0. The In this paper, we have also presented numerical results for
best-fit parameter values are=6.85 (=100); L=13.75 €  the structure factor. Our results elucidate the nature of the
=500); L=18.0 (=1000). structure-factor tail—the asymptotic behavior is the general-
ized Porod law, but this appears in conjunction with a se-
presented analytical results for the correlation function arisquence of higher-order power-law decays. The subdominant
ing from a single-spiral defect. We studied this correlationbehavior is accentuated at larger valueg3of
function in the short-distance limit, and examined the impli-  Finally, we would like to again stress the general nature of
cations of the short-distance singularities for the large-waveeur results. In this exposition, we have confined ourselves to
vector tail of the structure factor. In particular, we found thatpresenting analytical and numerical results éor0 and g
the structure-factor tail is characterized by a generalized Po# 0. However, the underlying paradigm remains the same in
rod tail, S(k,t)~k~(@*2) for large k, as in theXY model. an extended region of parameter space, viz., spirals govern
However, there are also subleading decay§k,t) the temporal evolution and spatial morphology of the CGL
~k~(@+2m with m>1, which would interfere with the un- equation for a wide range ot 8) values. The results of this
ambiguous observation of the generalized Porod tail. exposition apply directly in that case also, with appropriate
This paper constitutes the second and final part of thignodifications in the functional form of the spiral solution
exposition. Here, we have presented detailed numerical r¢18,20.
sults for domain growth laws; correlation functions; and
structure factors for phase ordering dynamics in the CGL
equation ind=2,3. We find that the spirals behave as vorti-
ces at early time$L(t)<L., whereqL.~0O(1)], i.e., the The authors are grateful to M.C. Cross for a fruitful col-
early-time behavior is analogous to that for ¥ model. At  laboration in the first stage of this exposition. S.P. is grateful
later times, the spiral nature of the defects plays an importartb A.J. Bray and H. Chate for useful discussions. S.K.D.
role in two respects. First, there is a repulsive spiral-thanks D. Srivastava for helpful inputs. S.K.D. is also grate-
antispiral interaction that leads to the statistical freezing oful to the University Grants Commission, India, for financial
domain growth. The saturation length scale depends yjon support.
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